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Abstract—This paper presents a novel scalable switch-
ing architecture for input queued switches with its proper
arbitration algorithms. In contrast to traditional switch-
ing architectures where the scheduler is implemented by
one single centralized scheduling device, the proposed
architecture connects several single scheduling devices
in series and a distributed scheduling algorithm is run
sequentially on them, whereby the inputs of each single
scheduling device build connections to a group of outputs,
considering both their local transmission requests as well
as global outputs availability information. We show that
a pipeline pattern can be used to increase the efficiency
of the scheduling scheme with scheduling algorithms
running in parallel on all the separate scheduling devices.
We first introduce a distributed parallel round robin
scheduling algorithm (DPRR) for the proposed archi-
tecture. Through the analysis of simulation results on
various admissible traffics, it is shown that the perfor-
mance of DPRR is much better than, or very close to the
performance of, other round robin scheduling algorithms.
We also prove that under Bernoulli i.i.d. uniform traffic
DPRR achieves 100% throughput. Secondly, we introduce
a distributed parallel round robin scheduling algorithm
with memory (DPRRM) as an improved version of DPRR
to make it stable under any admissible traffic.

I. INTRODUCTION

There are three major switching architectures in use

today: input queued (IQ), combined input and output

queued (CIOQ) and output queued (OQ) switches. As

port densities and line rates increase, IQ switch ar-

chitectures are acknowledged as a pragmatic approach

for implementing scalable switches and routers. In IQ

switches, virtual output queueing (VOQ) is used to

eliminate the head of line (HoL) blocking [1]. With

VOQ [2], a scheduler is needed to effectively resolve

the input and output contention and to decide the

departure order of cells from the input cards to the

corresponding outputs.

Various scheduling algorithms have been proposed

for IQ switches in recent years. Maximum weight

matching (MWM) algorithms have very good perfor-

mance under any admissible traffic, for example, LQF,

OCF and LPF [3][4]. However, they are too complex to

be practical for high-performance switches. Maximal

size matching (MSM) algorithms are practical and can

be implemented in hardware, such as iSLIP [5] and

FIRM [6]. They have fairly good performance under

uniform traffic; however, their performance is degraded

at high loads when the traffic is bursty or non-uniform.

In contrast to the deterministic algorithms, a class of

randomized algorithms has been proposed. Random-

ized algorithms achieve good performance in stability

while keeping linear complexity. However their delay

is high compared with MSM algorithms. This is true

even for non-uniform traffic as long as the maximal

size matching algorithms are operating in their “sta-

ble” region [7]. The main reason for this is that the

randomized algorithms have been designed with the

objective to make them stable, rather than achieving a

small average delay. Another problem with randomized

algorithms is that they remain complex in hardware

implementation. For example the “MERGE” procedure

in LAURA and SERENA [8] may induce a large delay

which degrades the performance of the algorithms.

Consequently, these algorithms have been proposed

primarily for switches with a small number of ports and

are generally unsuitable for next-generation switches,

where hundreds and even thousands of ports have to

be considered.

There are two main challenges in cost-effectively

designing very large capacity switches: port count and

port speed. Unfortunately, these two challenges are

interrelated and go hand in hand. With ever growing

bandwidth demands, the question is how to build a

very large capacity switch, with both large port count

and high speed. Recent research work attempted to

tackle the port speed scalability problem by trying

to relax the arbitration time constraint [9][10][11].

To solve the very strict scheduling time constraint,

some pipeline-based arbitration algorithms have been

proposed. A scheme named Round-Robin Greedy

Scheduling (RRGS) has been proposed in [9]. The

RRGS algorithm is based on pipeline technique so

that the arbiters perform their arbitrations for the

future time slots. An improved version of RRGS,

that uses weight, was introduced in [10] and was

called Weighted-RRGS (WRRGS). It was pointed out

in [11] that both RRGS and WRRGS fail to guarantee

fairness among inputs and this is undesirable. An ar-

bitration algorithm called Pipelined Parallel Maximal-

Sized Matching Scheduling (PMM) was introduced

in [11] and tries to overcome the failure of RRGS
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Fig. 1. A 256 × 256 scalable scheduling architecture using 8
32× 256 scheduling devices.

and WRRGS. PMM operates in a pipelined manner

and relaxes the timing constraint by allowing one

scheduling phase to take more than one time slot.

While PMM overcomes the failure of RRGS, both

PMM and RRGS didn’t, radically, solve the faced

scalability issue nor did they consider the hardware

implications and port scalability challenges.

In this paper, we propose a scalable switching ar-

chitecture along with its purely advocated scheduling

algorithms to solve both addressed scalability chal-

lenges. In particular, we present a scalable switching

architecture by building a large scheduler made up

of smaller scheduling devices. We also propose a

proper scheduling algorithm called Distributed Parallel

Round Robin scheduling (DPRR) and an improved

version of DPRR, called Distributed Parallel Round

Robin scheduling with Memory (DPRRM) for the

new architecture. We show that the whole system of

scalable IQ switches can be implemented in a practical

fashion with current technology.

The rest of the paper is organized as follows: Sec-

tion II introduces the proposed scheduling architecture

and describes its sequential scheduling. Section III

introduces two pipeline scheduling schemes; the simple

pipeline scheduling and a distributed parallel schedul-

ing. In Section IV, the scheduling algorithm DPRR and

DPRRM are described. Section V presents the sim-

ulation results and the performance analysis. Finally,

Section VI concludes the paper.

II. SCHEDULING ARCHITECTURE AND

SEQUENTIAL SCHEDULING

We consider a switch fabric with a large port count,

for example a 256 × 256 switch. A single 256 × 256
crossbar switch has 256 × 256 crosspoints. To reduce

the physical cost, we use eight separate 32 × 256
chips connected to each other to implement such a

256 × 256 switch. Figure 1 shows the block diagram

of a 256 × 256 scheduler built using eight 32 × 256

schedulers. The eight 32 × 256 schedulers are con-

nected one by one and scheduling algorithms are run

sequentially on them to implement a 256×256 switch.

Each 32 × 256 scheduler has 32 inputs connected to

a port processor (PP) and 8 schedulers that can link

to a total of 256 inputs. The Central Controller is

used to control the whole system. A 256-bit control

signal is used in the proposed architecture, referred to

as available output port (AOP). All nodes have read

and write access to the AOP, indicating the reservation

status of each of the 256 outputs. We denote a logical

‘0’ as an available output port and ‘1’ as a previously

reserved one. In the beginning, the Central Controller

selects a default single scheduler as a start node of the

sequential scheduling. Suppose Scheduler 0 is selected

to be the start node, it will receive the signal AOP0

from the Central Controller. Since no output has been

reserved yet, the 256 bits in AOP0 are all logical

‘0’s. A proper scheduling algorithm will be run on

Scheduler 0 and consequently, some of the 256 outputs

will have connections with the inputs of Scheduler 0.

The AOP is updated according to the reservation

status of the outputs and Scheduler 1 will receive

the updated AOP1. Meanwhile, Scheduler 0 sends the

signal of “Scheduling over” to Central Controller to

notify the completion of its scheduling. Then, Sched-

uler 1 selects some outputs from AOP1 by running

the scheduling algorithm and updates AOP1 to AOP2

according to the reservation status. AOP2 is passed

to Scheduler 2 to continue the scheduling, and the

“Scheduling over” signal is sent to the Central Con-

troller as well. All the separate schedulers will continue

this scheduling process sequentially. When the Central

Controller receives the “Scheduling over” signal from

the last scheduler, Scheduler 7, it sends a “Switch

enable” signal back to all the scheduling devices to

indicate the end of this round of scheduling and enable

the transmission of cells from the PPs to the crossbar.

To summarize, this 256 × 256 scalable scheduling

architecture works sequentially through AOP signals:

Scheduler 0 → Scheduler 1 → Scheduler 2 → ...

Scheduler 7. Each of the single schedulers runs a

proper scheduling algorithm and reserves some of the

outputs in turn.
Figure 2 provides a more detailed example. Assume

that we use four 8×32 scheduling devices to implement

a 32×32 switching. Suppose the first scheduling device

is the start node and it has the highest priority to select

outputs from the 32 outputs. At the first cell time, all

the 8 inputs of the first device can send their requests to

all the 32 outputs and the proper scheduling algorithm

is run to select outputs. Suppose, output ports {0, 4, 14,

15, 16, 17, 18 and 29} are matched with input 0 to input

7 respectively, thus AOP1 is: AOP1={1, 2, 3, 5, 6, 7, 8,

9, 10, 11, 12, 13, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30,

31}. AOP2={2, 7, 8, 9, 10, 11, 12, 13, ,21, 23, 24, 25, 26,
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Fig. 2. Processing in scalable scheduling architecture.

27, 28, 30}. Similarly, AOP3 ={2, 9, 10, 11, 13, 23, 25,

27}. When all the 4 schedulers finish the whole round

of scheduling, 32 inputs and outputs are completely

matched.
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III. PARALLEL PIPELINE SCHEDULING SCHEME

A. A simple pipeline scheduling

The sequential scheduling scheme reserves outputs

for each separate scheduler in turn, which requires

several time slots to carry out the scheduling and

reconfigure the crosspoints. A pipeline scheme can

be employed to reduce the delay. Figure 3 describes

the simple pipeline scheduling scheme. Each single

scheduler can enter the next round of scheduling im-

mediately as long as it completes its current scheduling

and receives the AOP signal from the last scheduler.

One round of scheduling consists of several steps of

scheduling performed by each of the single scheduling

devices in turn. When Scheduler 0 completes the 1st

round of scheduling, it sends AOP1 to Scheduler 1 and

then starts the 2nd round of scheduling. As soon as

Scheduler 1 receives the signal of AOP1, it starts the

1st round of scheduling. When Scheduler 1 completes

the 1st round of scheduling based on AOP1, it can

start the 2nd round scheduling right after it receives

the AOP1 signal from Scheduler 0.

Once the whole round of scheduling is completed,

the “Switch enable” signal will be issued by the

Central Controller to each PP, indicating the end of
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Fig. 4. The architecture of distributed parallel scheduling.

this scheduling round, and the crosspoint switches

are reconfigured and each port transmits cells to its

designated output in accordance with the selected

configuration. This pipeline scheduling scheme makes

the scalable scheduling more effective. One round of

scheduling can be completed at each cell time, making

it the same as a whole large switch.

B. Distributed parallel scheduling

Obviously, the above simple pipeline scheduling

scheme cannot guarantee the scheduling fairness for

each input. If the highest priority is given to some

fixed device (e.g., Scheduler 0 is the start node with

the highest priority in Figure 1), this simple pipeline

pattern may result in an unbalanced selection when the

load is non-uniform.

To improve the performance of the basic scalable

scheduling architecture, we develop a fair scalable

scheduling architecture - distributed parallel scheduling

architecture. Figure 4 gives the block diagram of the

scheduling architecture, in which all single schedulers

are connected circularly, i.e. the 1st device is connected

to the 2nd device, the 2nd the 3rd device, ..., and the
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last device connected to the 1st device.

Based on this circular connection, a fair pipeline

scheduling scheme is proposed. Figure 5 gives the

distributed parallel scheduling scheme. All scheduling

devices work in parallel, however, they work in dif-

ferent rounds of scheduling. For example, at the first

cell time, Scheduler 0, Scheduler 1, ..., Scheduler 7

start their 1st, 2nd, 3rd, ..., 8th round of scheduling

respectively. Then, at the second cell time, Schedul-

ing 0 receives the signal AOP8 from Scheduler 7

and continues the 8th scheduling round. Scheduler 1

receives signal AOP1 from Scheduler 0 and continues

the work of 1st round scheduling, etc.

In the following cell times, every single scheduler

works in a similar way. After eight cell times, each

single scheduling device has already completed eight

scheduling rounds, so in each port processor there are

up to 8 cells that have been selected for transmission.

All the configurations of different scheduling rounds

are stored in memory and as soon as the port processors

receive the “Switch Enable” message from Central

Controller, these scheduled cells will be transmitted to

the crossbar. We can see that each single scheduler of

the distributed parallel scheduling scheme has an equal

chance of being the start node with the highest priority

in reserving outputs. Thus, it is a fair scheduling.

IV. SCHEDULING ALGORITHMS

A. DPRR scheduling algorithm

1) Algorithm specification: Since weight-based al-

gorithms are too complex to be practical, our proposed

scheduling algorithm is based on a round robin scheme,

which is a 3-step request-grant-accept process. For one

scheduling device, it is an M × N switching, where

M < N . For example, if we use four scheduling

devices to implement a 32 × 32 switching, each of

the scheduling devices is an 8 × 32 switching. Since

the number of inputs is less than the number of

outputs, pointers of the output arbiters are quite easy

to synchronize if we use typical iterative scheduling

algorithms, such as iSLIP or FIRM. Since the number

of inputs is less than the number of outputs, some

pointers of the output arbiters cannot avoid synchro-

nization. The ideal case is that on average every four

pointers of the output arbiters point to one input so

that each input will have equal probability to receive

grants, thus increasing instant throughput.

We call our proposed scheduling algorithm Dis-

tributed Parallel Round-Robin (DPRR). The three steps

in one iteration of DPRR are as follows:

• Step 1-Request: Each input sends a request to

every output for which it has a queued cell.

• Step 2-Grant: If an output receives any request,

it chooses the one that appears next in a fixed,

round-robin schedule starting from the highest

priority element. The output notifies each input

whether or not its request was granted. The search

is in clockwise and counter-clockwise rotation

alternatively, each for one time slot.

• Step 3-Accept: If an input receives grants, it

accepts the one that appears next in a round-robin

schedule starting at the highest priority element.

Now we explain the design of DPRR. We con-

sider both uniform traffic and non-uniform traffic. The

pointer setting and moving scheme favors Bernoulli

i.i.d. uniform traffic, since the pointers are kept bal-

anced in synchronization and the traffic is also dis-

tributed uniformly among all outputs. It is required

that the pointers stay unchanged for a continuous 4

time slots. The reason is that one round of scheduling

requires 4 time slots to complete; thus 4 time slots

are period times to update pointers. This feature reacts

well under bursty traffic conditions, since cells arriving

within the same burst might be served continuously and

any burstiness delay will be reduced.

As for non-uniform traffic, two typical traffic pat-

terns are hot-spot and diagonal. The hot-spot pattern

assumes one output to be the “hots-pot”, and the traffic

load from all the inputs to this “hot-spot” is higher than

to other outputs. In our experiment, Output 0 is the hot-

spot with the highest rate (50%) of traffic destined to

it, and all other traffic is distributed to other outputs

uniformly. Another typical non-uniform traffic pattern

is diagonal traffic, where input i sends 2/3 and 1/3 of

its load to outputs i and i + 1, respectively.

Consider output 0, the traffic only comes from input

0 and input 3. The one-direction searching scheme of

iSLIP and FIRM will favor one input more than the

other. For example, when the pointer is located at 1, 2,

and 3, request from input 3 will be granted. The only

chance for the request from input 0 to be granted is

when the pointer moves to 0 or there is no request from

input 3 which causes unfairness. The two-direction

searching scheme that is conducted alternately for both

directions increases the fairness of scheduling.

2) Desynchronization effect of DPRR:

Theorem 1. DPRR achieves 100% throughput under

admissible Bernoulli i.i.d. uniform traffic.
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Proof: We assume that the offered load is 100%

uniform traffic, so that every VOQ is always occupied.

Let us consider a 16 × 16 switch, composed of four

4 × 16 scheduling devices. Since the pointers of the

output arbiters are desynchronized in such a way that

4 outputs point to one input of each 4× 16 scheduling

device and the scheduling is processed in turn with

each scheduling device. Assume Scheduler 0 is the

start node, then each of the 4 inputs will choose

one output from four candidates and send accept.

When the scheduling moves to Scheduler 1, the AOP

has 12 outputs and each input of Scheduler 1 has 3

outputs pointing to it. Recall that all the output pointers

pointing to the same inputs of Scheduler 0 also point

to the same inputs of Scheduler 1, 2 and 3, thus the

removed outputs from AOP point to different inputs

of Scheduler 1. Therefore, each input of Scheduler 1

chooses one output from 3 candidates and sends accept.

The same applies to Scheduler 2, each input chooses

one output from two candidates and sends accept. The

inputs of Scheduler 3 will send accept to the rest of

the outputs. Consequently, each input will send cells

to each output. Since every 4 time slots, all output

pointers will increase by one (module 16), each input

will keep sending cells to each output indefinitely. The

utilization of each output link is 100%. Thus, DPRR

achieves 100% throughput under uniform traffic.

B. DPRRM scheduling algorithm

1) Algorithm specification: Since the arrival process

is stationary and Bernoulli i.i.d., which affects the

queues occupancies; exploiting the arrival property is a

good way to improve performance and ensure stability.

To this end, we modified DPRR to make it stable which

results in the improved algorithm, distributed parallel

round robin scheduling with memory (DPRRM).

The following is the specification of DPRRM. Let

S(t - 1) be the schedule used at previous time slot and

A(t) is the matching obtained from arrival. To obtain

A(t), first we construct arrival graph G(t), if there is an

arrival from input i to output j, then we add an edge

from input i to output j. If G(t) is a matching, then A(t)

= G(t). If G(t) is not a matching, which means there is

more than one arrival to one output, in this case, we

choose the heaviest edge and remove the others for this

output to obtain a matching A(t) from G(t).

Let S(t) = argmaxS∈{S(t−1),A(t),D(t)} < S,Q(t) >,

where D(t) is the DPRR matching and Q(t) > is the

queue-lengths matrix. In the first several time slots,

there is no matching from DPRR, we set all the

elements of D(t) to be 0’s.

2) Stability of the algorithm:

Theorem 2. DPRRM is stable under any admissible

Bernoulli i.i.d. traffic.

Proof: In DPRRM, we use the matching A(t),

which is derived from the arrival graph, as one of the

probe matchings [7]. The arrival process is stationary

and Bernoulli i.i.d. Hence, there is a finite probability

> 0 such that A(t) is the MWM. According to [8], this

is sufficient to prove the stability of DPRRM.
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V. SIMULATION RESULTS

In our simulation, we consider a 32× 32 switch. In

our proposed parallel scheduling architecture, we use

four scheduling devices, each of which is a 8 × 32
switching to connect with each other. The traffic is ad-

missible Bernoulli i.i.d. Uniform traffic, uniform bursty

traffic (with burst length of 10 cells) and two non-

uniform traffic patterns, namely the diagonal and hot-

spot. The algorithms are executed using one iteration.
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Figure 6 illustrates the average delay performance

of various algorithms under uniform traffic. From the

figure, we can see that when the load is low, the delay

of proposed scheduling architecture is nearly a constant

value. That is because when the scheduling starts,

all the cells cannot be transmitted until one round

of scheduling is completed. This results in an initial

latency, which depends on the number of scheduling

devices used in the architecture. After that, cells are

transmitted one cell time after another. Practically, it

is equal to r-1, where r is the number of scheduling

devices used. For DPRRM, since there are cells sent

from the arrival matching in the beginning, thus the

delay is slightly lower than DPRR when the load

is low. When the load is above 0.6, our proposed

architecture with DPRR is much better than all the

other algorithms, where iSLIP, FIRM, RDSRR run on

a single 32 × 32 switch and iSLIP, FIRM run on the

proposed distributed architecture. As we mentioned

above, the pointer moving schemes of iSLIP and

FIRM are not suitable for our proposed scheduling

architecture as they tend to synchronize heavily. With

DPRR, the pointers synchronize in a balanced way

and the advantage of output reservation in turn by

our proposed scheduling architecture is also shown.

DPRRM has similar performance to DPRR.
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Fig. 9. Average delay under Diagonal traffic.

Figure 7 depicts the cell delay under bursty uniform

traffic. It is similar to the case of uniform traffic. Under

high traffic loads, the proposed scheduling architecture

with DPRR has very good performance, since the

pointer movement scheme makes it possible to send

cells within a burst continuously. DPRRM maintains

the same good performance as DPRR. Figure 8 shows

the simulation results under hot-spot traffic. The delay

of our proposed architecture is close to a constant

in all ranges. Only in the highest load range does

it increase slightly, however it is still much lower

than iSLIP, FIRM and RDSRR running on a single

switch. The delay of iSLIP and FIRM running on

the proposed architecture is similar to DPRR and

DPRRM running on the proposed architecture, since

our proposed architecture ensures the service of the

“hot-spot” all the time with high probability. In other

words, the architecture favors hot-spot traffic.

Figure 9 describes the delay performance under

diagonal traffic. When the traffic is high, the delay

performance of our proposed architecture with DPRR

is close to those algorithms run on a single switch,

even slightly worse.

VI. CONCLUSION

A scalable switching architecture is crucial when

the switching capacity becomes large (128 ports and

beyond). In this paper, we proposed a fair scalable

scheduling architecture, which employs distributed par-

allel pipeline scheduling for IQ switches. Using this

scalable scheduling architecture, a large scheduler can

be constructed by connecting several smaller sched-

ulers. We also proposed a round-robin scheduling

algorithm named DPRR and an improved version

(DPRRM) for the proposed architecture. Our architec-

ture employs the in turn reservation of outputs scheme,

which increases the instant throughput and decreases

bandwidth waste. The pointer setting and moving

scheme of DPRR reduces pointer synchronization and

thus cell delay. The simulation shows that our proposed

architecture with DPRR has very good performance

when the traffic load is high under most of the traffic

patterns and the delay at low load is close to a constant

value. DPRRM exhibits good performance while being

stable under any admissible input traffic.
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